

TENDA X **Smart Energy Cluster** challenge 1



and the second of the second

## TIRONI CRISTIAN



## VINCIGUERRA MARCO



KONVERTO

GRUPPO FOS

**KONVERTO** 

CRUPPO FOS

KONVERTO

Cauppo Fos 🔆

KON

amily

rt Energy Cluste

## VEDOVATI MATTEO



## MARCHESI GABRIELE

# **Datasets Info**

| Feature                                            | Min Value | Max Value | Mean   | Std   |
|----------------------------------------------------|-----------|-----------|--------|-------|
| Internal temperature<br>area 1 (Celsius<br>degree) | 15.500    | 30.522    | 23.732 | 2.930 |
| Internal temperature<br>area 2 (Celsius<br>degree) | 17.783    | 30.000    | 24.213 | 2.684 |
| External temperature<br>(Celsius degree)           | -2.530    | 37.350    | 16.285 | 8.68  |
| HVAC power (kW)                                    | 0         | 10.475    | 2.346  | 2.632 |

- 6 datasets, each one representing a building with a different size
- Measured with intervals of 15 minutes over 1 year

## ling with a different si ver 1 year

## **Dataset Example**



# **General Preprocessing**

- Excluded Dataset n° 6 for lack of data
- Filtering from 14/11/2021 to 13/11/2022 (1 Year)

## **Task Division**

### Generating new syntetic external temperature time series

# Given an external temperature time series and metadata generate the Internal temperatures and HVAC powers

# **External temperature time series generation**

- 1. Normalizing the data
- 2. Calculating the year seasonality of the datasets timeseries using daily averages
- 3. Given a daily average generate the time series evolution over the specific day
- 4. Combine every day back together for the final synthetic external temperature.



## Year seasonality

# The seasonalty component is calculated using seasonal decomposition



# Given the residuals are not normal (Shapiro-Wilk test), the noise addition is done with residuals resampling.







## **GAN model results comparrison**





Real time series temperature

## **GAN model full results**



Example of an external temeprature times series generated

# Preprocessing

- Removed all days containing at least one NaN value
- Removed days with less than 96 measurements
- Removed outliers based on quantiles
- Added column for Italian holidays
- Retrieved building sizes

### **Before preprocessing**









# LSTM model





External temperature over the day

## Holiday informations Building size



## Second Model: LSTM

### **Results:**

- Average train loss: 2,64
  Average test loss: 14,64
  Residuals:
- Shapiro-Wilk Test Statistic: 0.9414 (data are normal)





## Conclusions

Regarding the GAN model, as we saw from the previous results even though the residuals still show a small trend, it is able to generate a set of synthetic timeseries for each day of the year.

Unfortunately the LSTM model, given the achieved R^2 value of 0.28, we can't consider as relevant the generated results. Further tuning is required to obtain better results.

# Thank you